LEUVEN MINDGATE

Imec shows multiple enhancement options for next-generation FinFETs


Leading nano-electronics R&D center addresses key challenges of Germanium finFET technology at VLSI 2013

Leuven (Belgium)– June 13, 2013 – At this week’s VLSI 2013 Symposium in Kyoto, Japan, imec highlighted new insights into 3D fin shaped field effect transistors (FinFETs) and high mobility channels scaling for the 7nm and 5nm technology node.

At the VLSI 2013 symposium, imec presented the first strained Germanium devices based on a Si-replacement process, where a Ge/SiGe quantum-well heterostructure is grown by epitaxially replacing a conventional Si-based shallow trench isolation (STI). The technique allows for highly-versatile means of heterogeneous material integration with Si, ultimately leading the way to future heterogeneous FinFET/nanowire devices. The device shows dramatically superior gate reliability (NBTI) over Si channel devices due to a unique energy band structure of the compressively-strained Ge channel.

According to Aaron Thean, logic devices program director at imec: “We are facing significant challenges to scale the MOSFET architecture towards 7nm and 5nm. Besides dimension scaling, enhancing the device performance, in the face of rising parasitics and power, is a major focus of the logic device research at imec. Among the key activities are R&D efforts investigating both high-mobility channel material and new methods of enhancing Si-based FinFET.”

With options to introduce heterostructure into next-generation FinFET, quantum-well channels based on a combination of materials that enhance both mobility and electrostatics, can be engineered. At VLSI 2013, imec also presented comprehensive simulation work that investigated material combinations of Si, SiGe, Ge and III-V channels to enhance device electrostatics, providing important process guidance to extend FinFET scalability.

Moreover, imec presented novel highly scalable engineering approaches to tune gate workfunction and improve mobility, noise and reliability in Si nMOS finFETs. The impact on the performance of layout-induced stress effects in scaled finFETs and the impact of random telegraph noise (RTN) fluctuation in lowly doped devices was shown.

Imec’s research into next-generation finFETs is performed in cooperation with imec’s key partners in its core CMOS programs including GLOBALFOUNDRIES, INTEL, Micron, Panasonic, Samsung, TSMC, Elpida, SK hynix, Fujitsu and Sony.

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of more than 2,000 people includes more than 650 industrial residents and guest researchers. In 2012, imec's revenue (P&L) totaled 320 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

Contact:

Hanne Degans, External Communications Officer, T: +32 16 28 17 69, Mobile : +32 486 06 51 75, hanne.degans@imec.be

 

Subscribe to our newsletter

Stay tuned and get our news in your inbox: subscribe here.

Keep me informed
Follow us